Worksheet 3.2—Rolle’s Theorem and the MVT

Show all work. No calculator unless otherwise stated.

Multiple Choice

_____ 1. Determine if the function \(f(x) = x\sqrt{6-x} \) satisfies the hypothesis of Rolle’s Theorem on the interval \([0,6]\), and if it does, find all numbers \(c\) satisfying the conclusion of that theorem.
 \[\text{(A) 2, 3} \quad \text{(B) 4, 5} \quad \text{(C) 5} \quad \text{(D) 4} \quad \text{(E) hypothesis not satisfied}\]

_____ 4. Determine if the function \(f(x) = x + x^{2/3} (1-x)^{1/3} \) satisfies the hypothesis of the MVT on \([0,1]\).
 If it does, find all possible values of \(c\) satisfying the conclusion of the MVT. (You will have to factor out least powers.)
 \[\text{(A) } \frac{2}{3} \]
 \[\text{(B) } \frac{1}{4} \]
 \[\text{(C) } \frac{1}{2} \]
 \[\text{(D) } \frac{1}{3} \]
 \[\text{(E) hypothesis not satisfied}\]

_____ 5. Which of the following functions below satisfy the hypothesis of the MVT?
 I. \(f(x) = \frac{1}{x+1} \) on \([0,2]\)
 II. \(f(x) = x^{1/3} \) on \([0,1]\)
 III. \(f(x) = |x| \) on \([-1,1]\)
 \[\text{(A) I only} \quad \text{(B) I and II only} \quad \text{(C) I and III only} \quad \text{(D) II only} \quad \text{(E) II and III only}\]

15. Suppose that we know that \(f(x) \) is continuous and differentiable on \([6,15]\). Let’s also suppose that we know that \(f(6) = -2 \) and that \(f'(x) \leq 10 \) for all \(x \in [6,15]\). What is the largest possible value for \(f(15) \)?
16. Let \(f(x) = \tan x \). Show that \(f(\pi) = f(2\pi) \) but that there is not number \(c \in (\pi, 2\pi) \) such that \(f'(c) = 0 \). Why does this not contradict Rolle’s Theorem?

11. (Calculator permitted) For \(f(x) = -x^4 + 4x^3 + 8x^2 + 5 \) on \([0, 5]\)
 (a) Determine if the MVT can be applied on the given interval. If so, find the value(s) guaranteed by the theorem.

 (b) Find the equation of the secant line on \([0, 5]\)

 (c) Find the equation of the tangent line at any value of \(c \) found above.

 (d) On your calculator, sketch a graph of \(f(x) \) on \([0, 5]\) along with the secant and tangent line(s). Sketch the graph below.

13. The function \(f(x) = \begin{cases} 0, & x = 0 \\ 1-x, & 0 < x \leq 1 \end{cases} \) is differentiable on \((0,1)\) and satisfies \(f(0) = f(1) \). However, its derivative is never zero on \((0,1)\). Does this contradict the Mean Value Theorem? Explain why or why not.

14. Determine the values of \(a, b, \) and \(c \) such that the function \(f \) satisfies the hypothesis of the MVT on the interval \([0,3]\).

 \[
 f(x) = \begin{cases}
 1, & x = 0 \\
 ax + b, & 0 < x \leq 1 \\
 x^2 + 4x + c, & 1 < x \leq 3
 \end{cases}
 \]